
Web Application Penetration Test
Final Report

Prepared for: OWASP Juice Shop

April 22, 2020

Reference: S-200809042



TABLE OF CONTENTS

TABLE OF CONTENTS 1

EXECUTIVE SUMMARY 2

NARRATIVE AND ACTIVITY LOG 3

FINDINGS AND RECOMMENDATIONS 7
RISK RATINGS 7

FINDINGS SUMMARY 8

CRITICAL RISK FINDINGS 8

1. SQL Injection Flaws 8
2. Authorization Bypass 10

HIGH RISK FINDINGS 13
3. Cross-Site Scripting Flaws 13

MEDIUM RISK FINDINGS 16

4. Inadequate Security Standards for Password Storage 16
LOW RISK FINDINGS 17

5. Weak Password Complexity Requirements 17

STRATEGIC GUIDANCE 19

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
1

info@secureideas.com
+1 (866) 404-7837



EXECUTIVE SUMMARY

Secure Ideas performed a penetration test of OWASP Juice Shop's web application.  The scope of
this assessment, as provided by Juice Shop, was http://juice-shop.wtf.

The following chart shows the count of findings by risk for this report:

Critical High Medium Low

2 1 1 1

Based on the findings in this report, Secure Ideas has evaluated the overall risk to Juice Shop as it
pertains to the scope of this engagement is Very High:

Secure Ideas found multiple critical and high-rated vulnerabilities in the Juice Shop web
application. These weaknesses are very concerning, and if leveraged, could decrease the security,
usability, and functionality of the application.

One of the most critical issues Secure Ideas found is that the application was not resistant to
injection-based attacks, which is considered one of the most dangerous attack vectors for
applications. One example showcasing the severity of this vulnerability was in our ability to craft a
simple SQL injection (SQLi) string to log in as the administrator of the application, without any
prior knowledge of the username or credentials. There were also several instances of Cross-Site
Scripting (XSS) flaws throughout the application. Both the SQLi and XSS flaws can easily be
remediated through consistent input sanitization and output encoding and are discussed further
in the finding section below.

Another significant issue discovered is an authorization bypass flaw.  Secure Ideas found that an
attacker can use the API to create a new user with any role, including administrator access.  This is
due to a lack of authorization checking within the API.  Consistency is important in authorization
validation, and the application must enforce it across all interfaces to prevent resources from
being unprotected.

These, and the other issues found are outlined in the report that follows.  Secure Ideas appreciates
the opportunity to work with Juice Shop to help improve its security posture.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
2

info@secureideas.com
+1 (866) 404-7837



NARRATIVE AND ACTIVITY LOG

Secure Ideas began by working through our standard methodology of Recon → Mapping →
Discovery → Exploitation.  Since this assessment was not a black box assessment, the team
skipped the initial Recon phase, starting with Mapping and Discovery.  Throughout the
engagement, we conducted several types of activities on each of the web interfaces within the
Juice Shop application.  The following list details the high-level activities and considerations
carried out during the engagement.  This list is not inclusive of every test performed.

● Conducted mapping of the in-scope application
● Evaluated for common web flaws such as:

○ Authentication and session management flaws
○ Authorization bypasses
○ JSON Web Token (JWT) manipulation
○ Cross-Origin Resource Sharing (CORS) misconfigurations
○ Cross-Site Request Forgery (CSRF)
○ Testing for Server-Side Request Forgery (SSRF)
○ Ineffective / misconfigured security controls
○ Injection flaws such as Cross-Site Scripting (XSS) and SQL Injection (SQLi)
○ Fuzzing of HTTP header values
○ Testing for HTTP Desync and Cache poisoning flaws
○ Fuzzing of query and body parameters
○ Client side JavaScript static and dynamic analysis

● Testing for other high-risk items including all testable vulnerabilities listed in the OWASP
Top-10

As part of the mapping phase, we explored all of the available functionality within the application
using each account role provided.  Starting as a normal user, we began building a map of the
application features and potentially vulnerable areas, such as login forms, user profile pages, or
input fields for sensitive information.  This process was also repeated under an administrative
account, and the differences in roles and access permissions were noted.  By thoroughly mapping
the application and roles, we had developed a good idea of the functionality and features used
within the application, as well as how the application was intended to behave.

Next, we walked back through the application again, but this time from the perspective of a
malicious user or attacker.  Instead of considering the expected actions from normal application
usage, we applied various techniques related to intercepting/manipulating outgoing requests or
incoming responses, passing malformed data to input fields, and attempting to generate unusual
responses from the application.

When examining the login form, we noticed that single quotes could be used to cause errors on the
page, which is typically indicative of poor input handling.  Additional probing showed that the Email

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
3

info@secureideas.com
+1 (866) 404-7837



field was susceptible to SQL injection.  By entering the string ' or 1=1-- in the Email field, along
with any value in the Password field, caused the application to evaluate the login condition as true.
This authenticated us as the first entry in the Users database table, which is the administrator
account.  The results can be seen in the screenshot shown below that depicts the profile of the
current logged on user:

After observing that this field can be used to inject various types of SQL commands, we began
experimenting with different queries to see what other information could be gained in this
manner.  We discovered that by applying a slight modification to the query, we were able to log
into the next account in the application.  Using a query such as, ' or 1=1 and email not
like('%admin%');-- , we were able to filter out the admin account, moving the ‘login pointer’ to the
next account in the database which didn’t contain the string admin.  Using some creativity, and this
query as a base template, an attacker could eventually enumerate the Users table to harvest every
username it contained.

Due to the criticality of the SQLi, which allows an unauthenticated user to bypass the login
authorization process, Secure Ideas quickly reached out to the Juice Shop point of contact.  A brief
explanation of the flaw was provided, sanitizing any specific information that shouldn’t be sent
over unsecure email, and a meeting was requested to review the findings discovered within the
Juice Shop application.

While waiting for Juice Shop to respond, we continued our testing of the application.  During this
time, another significant issue was discovered, which compounds the risk associated with the SQLi

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
4

info@secureideas.com
+1 (866) 404-7837



flaw noted above.  After logging into the account of the next user in the database, we took some
time to inspect the Change Password functionality. By default, the Change button used to update a
user’s password is only enabled when the Current Password, New Password, and Repeat New
Password fields are populated correctly.  However, we discovered that by using the browser’s f12
developer tools, a user’s password can be updated without knowing the current password.  This
was accomplished by manipulating the webpage submit action.  As seen below, when changing the
mat-raised-button mat-primary from disabled to enabled, the password change can be processed by
the application, bypassing the Current Password field requirements.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
5

info@secureideas.com
+1 (866) 404-7837



Continuing on to the API’s tested in this engagement, we found that an unauthenticated user
could submit a simple POST request, and create users with administrative privileges.  An example
request can be seen in the code block shown below:

POST /api/Users HTTP/1.1
Host: juice-shop.wtf
Content-Type: application/json
Connection: close
Content-Length: 82

{"email":"admin","password":"admin","role":"admin"}

In this request, no authentication or tokens are provided, and no cookie values are given.  The only
requirements found for the creation of an administrative account are the Content-Type:
application/json header, and a few basic account flags added into the body of the request.  As
shown in the following screenshot, this POST request was used to successfully create an admin
user account, giving it the admin role.

Due to the critical nature of this authorization bypass, another email was sent to Juice Shop.  A
meeting was set up to go over these findings immediately as well as get additional direction on
considerations for the remainder of this test.  Secure Ideas then walked Juice Shop’s technical
team through the critical findings discovered, and discussed various options related to the risk and
remediation of these items.  Juice Shop’s technical team was quick to respond to the input
provided, and have already begun a root cause analysis to determine how to best implement fixes
in accordance with Juice Shop’s internal policies and processes.  Additional effort is going to be
spent on reviewing, and determining the best way to address security concerns throughout the
application’s development process.  These, and the other issues discovered are outlined in the
report that follows.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
6

info@secureideas.com
+1 (866) 404-7837



FINDINGS AND RECOMMENDATIONS

This report outlines the findings Secure Ideas collected from the testing, as well as Secure
Ideas’ recommendations that will assist OWASP Juice Shop in reducing its risks and
helping remove the vulnerabilities found.

RISK RATINGS

Each finding is classified as a Critical, High, Medium, or Low risk based on Secure Ideas’
professional judgment and experience providing consulting services to organizations of various
sizes and industries.  In determining risk, Secure Ideas considers each of the following aspects:

● Potential Threats: This includes an assessment of potential threat actors and the level of
expertise

● Likelihood of Attack: Considerations include attacker motivations, complexity of the
attack vector, and potentially mitigating security controls

● Possible Impact: For each finding, Secure Ideas considers the potential damage to the
organization resulting from a successful attack

Each of these factors is assessed individually and in combination to determine the overall risk
designation.  These assessments are based on Secure Ideas’ professional judgment and experience
providing consulting services to enterprises across the country.  The following risk level
descriptions demonstrate the types of vulnerabilities designated in each category.

Critical
Vulnerabilities found that are being actively exploited in the wild and are known to lead to remote
exploitation by external attackers.  These security flaws are likely to be targeted and can have a
significant impact on the business.  These require immediate attention in the form of a
workaround or temporary protection.  When discovered, Secure Ideas immediately stops all
testing and contacts the client for further instructions.  Examples of this may include
external-facing systems with known remote code execution exploits or remote access interfaces
with weak or default credentials.

High
Vulnerabilities found that could lead to exploitation by internal or remote attackers.  These
security flaws are likely to be targeted and can have a significant impact on the business.  These
flaws may require immediate attention for temporary protection, but often require more systemic
changes in security controls.  Some examples include command injection flaws, use of end-of-life
software, and default credentials.

Medium

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
7

info@secureideas.com
+1 (866) 404-7837



Vulnerabilities or services found that could indirectly contribute to a more major incident; or that
are directly exploitable to an extent that is somewhat limited in terms of availability and/or impact.
This class of vulnerability is unlikely to lead to a significant compromise on its own, however can
pose a substantial danger when combined with others.  Some examples include weak transport
layer security on a sensitive transaction, insufficient network segmentation, or the use of
vulnerable software libraries.

Low
Vulnerabilities or services that, when found alone, are not directly exploitable and present little
risk, but may provide information that facilitate the discovery or successful exploitation of other
flaws.  Examples include disclosure of server software versions and debugging messages.

FINDINGS SUMMARY
The following table summarizes the findings. Each finding is broken out in detail by risk
immediately after the summary table.

Finding Risk

1. SQL Injection Flaws Critical

2. Authorization Bypass Critical

3. Cross-Site Scripting Flaws High

4. Inadequate Security Standards for Password Storage Medium

5. Weak Password Complexity Requirements Low

CRITICAL RISK FINDINGS

1. SQL Injection Flaws

Industry Standards

OWASP Top 10 A1: Injection

NIST 800-53 SI-10: Information Input Validation

Summary

When data enters a web application without being properly sanitized, it may expose the
application to several categories of vulnerabilities. One of these categories is the injection of

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
8

info@secureideas.com
+1 (866) 404-7837



Structured Query Language (SQL) by a third party. This type of attack is commonly referred to as
SQL injection.

SQL injection occurs when data is inserted or appended into an application input parameter, and
that input is used to dynamically construct a SQL query.  When a web application fails to properly
sanitize data, which is passed on to dynamically create SQL statements, it is possible for an
attacker to alter the construction of back-end SQL statements.

Some of the potential risks include:

● Loss of sensitive or confidential data
● Altered sensitive or confidential data
● Bypass of authentication
● Bypass of authorization
● Access to underlying Operating System
● Further attacks against users of the application (XSS, CSRF)

One way to exploit this type of vulnerability is via Blind SQL Injection.  Blind SQL injection is
identical to a standard SQL Injection attack, except that when an attacker attempts to exploit an
application, rather than getting a useful error message, the attacker instead gets a generic page
specified by the developer. This makes exploiting a potential SQL Injection attack more difficult
but not impossible.  An attacker can still gain access to data by asking a series of True and False
questions through SQL statements.

Finding

 Secure Ideas discovered that the login page of the Juice-shop application is vulnerable to SQL
Injection.  This is due to the use of unsanitized user supplied input.  Using the parameters ‘ = OR
1=1-- , as the username and any password, Secure Ideas was able to login as the Admin account.
Considering Admin was the first user listed in the application, it was therefore used due to the
exploit payload.
 
 As shown in the following screenshots, the admin account was the first account listed in the
application.  Additional accounts could be accessed by using ' or 1=1 and email not like('%admin%');--
and so on.
 

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
9

info@secureideas.com
+1 (866) 404-7837



 

Recommendations

Secure Ideas recommends that Juice Shop use parameterized queries when interacting with a database
backend.  Parameterized queries are a method where the query is created within the application code
without the values needed.  Placeholders are used and during execution replaced with the values from the
user or the transaction.  Currently parameterized queries are the strongest protection from SQL injection
attacks.

If for some reason, parameterized queries are not possible, Secure Ideas recommends that Juice Shop
perform input validation to prevent this form of attack.  Developers should ensure that the application
validates that the input from the user is of exactly the type that the developer intends.  For example, if
Juice Shop only expects alphanumeric characters in the input, then the application should perform input
filtering to reject anything else.  This is considered a whitelist approach.

Further, Secure Ideas recommends that Juice Shop properly handle all SQL statements, and commands
within the code so that DBMS error messages are not returned directly to the browser.

Juice Shop developers can also use a common security library to perform input filtering and output
encoding. Implementations should follow OWASP best practices for preventing this vulnerability,
regardless of whether or not Juice Shop chooses to use a library for these tasks.
https://owasp.org/www-project-cheat-sheets/cheatsheets/SQL_Injection_Prevention_Cheat_She
et.html

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
10

info@secureideas.com
+1 (866) 404-7837



2. Authorization Bypass

Industry Standards

OWASP Top 10 A5: Broken Access Control

NIST 800-53 AC-3 Access Enforcement

Summary

Authorization bypass is a flaw in software or a hole in security planning where a user or an
attacker is able to access data or functionality for which the user is not authorized.  This
vulnerability does not require a malicious attacker to cause increased risk to a business; the mere
fact that unauthorized users have access to a business infrastructure increases risks to the
company.  The core issue in authorization bypass is a lack of validation within the application.
When the web application accepts input from a user and uses that input to retrieve data or
provide access, it is critical that the application validate that the user actually has permission to
perform that action.  When this validation does not happen, or is able to be fooled, the application
is vulnerable to attack.

Risks businesses face from an authorization bypass include the introduction of bugs to code via
users’ mistakes, an attacker gaining access to administrative portions of the application, or loss of
important business-related data to a data thief.

Finding

Secure Ideas has found that the Juice shop application contains an authorization bypass flaw.
During the testing Secure Ideas was able to create an admin account with an unauthenticated
session.

In the Juice Shop API, Secure Ideas discovered that an attacker or malicious user could create a
new user with the role of admin.

The following description explains how Secure Ideas was able to perform this attack.
1. Create a Post request in Postman API testing tool to https://juice-shop.wtf/api/Users
2. Add a line in the Body of the request using the following statement

{“email”:”admin”,”password”:”admin”,”role”,”admin”}
3. Send Request to the api endpoint
4. Visit login page to login using new admin account

As shown below, the new user has been created with administrative privileges:

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
11

info@secureideas.com
+1 (866) 404-7837



Recommendations

Secure Ideas recommends the authorization bypass flaw be remediated immediately due to the exposure
of administrative access via the API.

The first step in remediating this flaw involves changing the application to validate authorization
information.  Juice Shop must modify the code of the application to verify that a user is allowed to view
the information before returning it to the browser.  If the user is not authorized, the application should
return an error message instead of the information requested.

The second step is to never trust user supplied input, or expect that the client side code is protected from
manipulation.  Every authorization should be validated by backend services, and exposure of this
validation process should be hidden as much as possible to any client side process.  This will help ensure
that any user input is handled safely.

The next step is to include a logging and monitoring system within the application to detect attempts to
access other members’ information.  These logs can then be reviewed to determine if someone is
attempting to attack the application.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
12

info@secureideas.com
+1 (866) 404-7837



Any time a user attempts to access information or functionality that is restricted from them, the
application can alert staff members of the attempt.  This can be performed in a number of ways.  The
simplest is the application sends an email or SMS message to Juice Shop support staff.  Juice Shop could
also modify the application to send messages to a central monitoring solution, if one has been
implemented within the Juice Shop infrastructure.  If modifying the application in this way is not
preferred, Juice Shop can also use a script that parses the log files for messages of exploitation attempts.
The script can then perform the action chosen to alert the Juice Shop staff.

HIGH RISK FINDINGS

3. Cross-Site Scripting Flaws

Industry Standards

OWASP Top 10 A5: Broken Access Control

NIST 800-53 AC-3 Access Enforcement

Summary

Not filtering untrusted user-supplied input may expose a web application to several categories of
vulnerabilities.  One of these categories is the injection of HTML or JavaScript code by a third
party.  This type of attack has been generally referred to as “Cross-Site Scripting” or XSS.

One common way of exploiting this is with a social-engineering attack vector and a crafted link.
This would exploit a flaw in one or more parameters in the URL and query string.  When the target
user follows the link, the malicious code executes in the target’s browser, within the context of the
vulnerable page.

Cross-site scripting flaws are typically classified by two attributes: whether they are persisted and
whether they are reflected.  When a persisted exploit is used, the payload is stored, and executes
again on subsequent visits to the vulnerable page.  The classic example is server-side persistence
in the database.  Because the data in the database may be shared between users, it is possible for
an attacker to simply add the payload through a shared data field in order to circumvent the need
for social engineering.  This is predicated on the attacker being able to add the payload from either
a legitimate account or an unauthenticated context.  Even when social engineering is necessary to
introduce the payload, if it is in shared data it can still reach other users in addition to the original
target.  Persistence is not necessarily always on the server, however, and could instead be stored in
cookies set by JavaScript.  In more modern applications, the localStorage and indexedDB client-side
APIs may be used as well.

The other attribute used for classification is whether it is a reflected flaw.  If it is reflected, the flaw
is in the handling of input that is sent to the server and returns in a response.  The

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
13

info@secureideas.com
+1 (866) 404-7837



database-persisted example does this, and could therefore be considered both reflected and
persisted.  An unpersisted example would be an error message returned from the server that
unsafely includes a value from the input.

In all cases, the malicious scripts are executed in a context that appears to have originated from
the targeted site.  This gives the attacker full access to the document retrieved, providing almost
unlimited control over the victim’s experience using the application.  A wide variety of options are
available for crafting an effective exploit, which may incorporate some of the following:

● Sending application data to a server controlled by the attacker
● Using the victim’s session to access additional data or functionality
● Stealing cookies that are not protected with the httponly flag
● Manipulating the view presented to the victim for a social engineering purpose, such as

faking a session timeout to prompt for a login or convincing the user to install something
● Stealing data from sensitive input boxes, such as account credentials or credit card

information
● Launching attacks against or harvesting data from other applications open to interaction

with the current domain through a cross-origin resource sharing (CORS) policy, potentially
using the victim’s cookie-stored credentials

● Changing links on the page to include the cross-site scripting payload in other pages as the
user navigates the site

Finding

Secure Ideas discovered that Juice Shop’s applications are vulnerable to cross-site scripting (XSS)
due to the application’s use of input within the response to the user.  Many of the flaws identified
were persisted through the database, and many could be exploited by an unauthenticated attacker
without relying on a direct social engineering attack such as phishing.

One example of an XSS flaw is within the user profile page of the Juice Shop application.  An
attacker can replace the track-result id with a JavaScript iframe payload.  When a payload, such as
<iframe src="javascript:alert(`xss`)"> is submitted in the browser address bar, it causes the
application to incorporate the attack within the resulting web page.  The screenshot below is what
the victim browser would see.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
14

info@secureideas.com
+1 (866) 404-7837



Recommendations

Secure Ideas recommends that Juice Shop perform both input validation, and output encoding to prevent
this form of attack.   Developers should ensure that the application validates that the input from the user
is of exactly the type that the developer intends.  For example, if Juice Shop only expects alphanumeric
characters in the input, then the application should perform input filtering to reject anything else.  Output
encoding provides additional protection by ensuring that hostile data, such as JavaScript, will not be sent
to the browser.  This way if an attack gets past the input filtering, it would be defanged or made
non-malicious by the output encoding.

Juice Shop developers can use a common security library to perform this input filtering and output
encoding.  Implementations should follow OWASP best practices for preventing this vulnerability,
regardless of whether or not Juice Shop chooses to use a library for these tasks.  These recommendations
can be found at:
https://owasp.org/www-project-cheat-sheets/cheatsheets/Cross_Site_Scripting_Prevention_Chea
t_Sheet.html

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
15

info@secureideas.com
+1 (866) 404-7837



MEDIUM RISK FINDINGS

4. Inadequate Security Standards for Password Storage

Industry Standards

OWASP Top 10 A6: Security Misconfiguration

NIST 800-53 SC-28 Protection of Information at Rest
IA-2 Identification and Authentication

Summary

Password storage is a key point in securing business assets.  If passwords are stored or transmitted
via poor algorithms or worse, in clear text, then the business’s entire software system is vulnerable
to exploitation if the password table is accessed by an attacker.

If passwords are not regularly changed, if the algorithm is not salted (ensuring that no two
encoded passwords are the same), and if the encryption is inadequate, then a business faces the
risk that an attacker will access every account in the database for a period of time until the attack
is discovered.

Finding

Due to the SQL injection flaw above, Secure Ideas found that the Users of the Juice Shop stores
passwords.  Analysis of the password table revealed that passwords are stored as a MD5 hash of
the user’s original password.  The following screenshot shows a sample from the data.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
16

info@secureideas.com
+1 (866) 404-7837



MD5 is a hashing algorithm that is known to have problems that allow for cryptographic collisions,
meaning that two different pieces of data can produce the same MD5 hash. MD5 also lends itself
to brute force attacks due to the relatively low computational power it takes to generate an MD5
hash.

In addition, the MD5 hashes that Secure Ideas found were not salted.  This is evident by the fact
that several of the password hashes in the previous screenshot are identical.  Password salts make
it much harder for an attacker to crack a password hash as it requires the attacker to know the salt
value in order to start cracking the hashes.

Recommendations

Secure Ideas recommends that Juice Shop store passwords in the database with a secure one-way hashing
algorithm as well as a salt.

A unique salt per user helps ensure that every password hash appears different even if the same password
was selected by more than one user.  Ensuring each hash is different is a measure that increases the
complexity, and therefore the necessary time, of cracking the hashes.  When the application needs to
authenticate a user, it should hash the supplied password, with the salt, and compare the hashes.

The following OWASP resource provides more information on the value of salts and correct
implementation:

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Additionally, Secure Ideas recommends that Juice Shop use the PBKDF2 hashing function for storing
passwords.  If PBKDF2 is not possible for some reason, then Juice Shop should defer to either the “scrypt”
or “bcrypt” functions.  All of these hashing solutions are designed to be computationally cumbersome so
that an attacker with a stolen list of hashes will require significant resources to crack them.  Each of these
algorithms is also adaptive over time, meaning they can be configured to become more computationally
cumbersome as technology becomes faster, thus building a degree of “future proof” in the algorithms.

LOW RISK FINDINGS

5. Weak Password Complexity Requirements

Industry Standards

OWASP Top 10 A6: Security Misconfiguration
A5: Broken Access Control
A2: Broken Authentication

NIST 800-53 AC-3: Access Enforcement

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
17

info@secureideas.com
+1 (866) 404-7837



Summary

One of the aspects tested during the penetration test, was the password complexity requirement
of the Juice Shop applications.  For most applications, the password is the single factor of
authentication that grants access to all other information.  For this reason, it is imperative that
users create strong passwords that are difficult to attack.  Unfortunately, most users do not
understand the importance of strong passwords or how to create them.  Application developers
must take the responsibility to develop applications in such a way that requires users to create
passwords that can withstand common password-guessing attacks.

There are three common types of password guessing attacks.  The first is a brute-force attack in
which attackers try every combination of every letter in order to eventually find the correct
password.  Dictionary attacks utilize a list of common passwords such as Password1 and abc123.
The third type of attack is a hybrid attack in which the attacker uses common passwords that have
been mangled with brute-force techniques.  For instance, the attacker might try the word Secret
followed by every possible 2-digit numeral and symbol combination.  This can be successful when
users tack on numbers and symbols to the end of their password to comply with password
requirements.

Finding

Secure Ideas found that while the application attempts to enforce the use of complex passwords,
the password complexity requirements are weaker than recommended for this type of application.

Secure Ideas found that the application tested allowed passwords such as admin123 and
password123.  These types of passwords are commonly found in widely-accessible dictionaries.  As
a matter of fact, Secure Ideas commonly uses the Password123 string against systems that
implement account lockout due to it commonly being found as the password for accounts in web
applications.

Recommendations

Juice Shop should strengthen the password requirements within the application.  While it does perform
some complexity checking, Juice Shop should increase these checks based on industry standards.  One
source of an industry standard is from the SANS Institute.  SANS publishes a free guide to password
complexity, which is available at:
https://www.sans.org/security-resources/policies/general/pdf/password-construction-guidelines

According to this guide, passwords should contain at least fourteen characters, with preference given to
passphrase.  Additionally, passwords should avoid any of the following flaws:

● Contain eight characters or less
● Contain personal information such as birthdates, addresses, phone numbers, or names

of family members, pets, friends, and fantasy characters
● Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
18

info@secureideas.com
+1 (866) 404-7837



● Are some version of Welcome123, Password123,  or Changeme123

Secure Ideas also recommends that Juice Shop review options for adding multi-factor authentication to
the application.  Traditional user credentials are easily reused by attackers once stolen.  By applying a
second form of authentication, such as something the user knows, something the user is, or something the
user has, Juice Shop can ensure that user accounts are much more difficult to compromise.  In addition,
less complex passwords pose less risk when additional authentication factors are required.

Finally, Juice Shop should review the application’s logging to confirm that failed login attempts are
recorded into an error log.  Logs should be reviewed daily to detect user accounts with a higher than
normal amount of failed login attempts.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
19

info@secureideas.com
+1 (866) 404-7837



STRATEGIC GUIDANCE

Secure Ideas performed a web application penetration test for Juice Shop.  Through testing this
application Secure Ideas was able to gather a general sense of Juice Shop’s security posture and
would like to make the following strategic considerations available to Juice Shop:

Provide Secure Coding Training for Developers
Finding and remediating flaws after the fact is the most expensive way for organizations to handle
security vulnerabilities.  It takes a considerable amount of time and effort for developers to
consider the discovered issues, review the code, make the appropriate modifications, work
through quality assurance testing, and then roll out the changes.  Alternatively, training developers
to understand security flaws and avoid vulnerabilities during the development process is much
more efficient and effective.  Unfortunately most developer training venues do not adequately
teach secure coding.  During this assessment Secure Ideas found evidence that suggests many of
Juice Shop’s developers are not properly trained to avoid common mistakes.  Juice Shop should
consider providing secure coding training to all developers on a regular basis.

Consider Multi-Factor Authentication
Multi-Factor authentication is recommended for employees to use when accessing
sensitive systems such as VPN, domain controllers and other critical or sensitive
resources.  The Factors of the Multi-Factor Authentication mechanism fall into three
categories: knowledge (something they know), possession (something they have) and
inherence (something they are).  A wide range of systems exist that can be implemented
directly into the Windows Server authentication systems as well as Linux servers and
applications.  One common system found in corporate environments is the RSA SecurID
solution.  Another popular system in smaller-scale environments is available from Duo
Security or Google Authenticator.  Whichever solution is chosen, the most important
aspect of implementing Multi-Factor Authentication is to ensure that at least two different
Factors are required to gain access and not simply the same Factor required multiple times
(i.e., password plus fingerprint instead of multiple passwords.)

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
20

info@secureideas.com
+1 (866) 404-7837


